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Abstract
Dimensional analysis is a simple, clear and intuitive method for determining
the functional dependence of physical quantities that are of importance to a
certain process. However, in physics textbooks, very little space is usually
given to this approach and it is often presented only as a diagnostic tool used to
determine the validity of dependences otherwise obtained. This paper presents
the basics of dimensional analysis in two cases: the resistance force of the
fluid that occurs when a body moves through it and the speed of propagation of
waves on water. After that, a general approach to dimensional analysis based
on the Buckingham theorem is shown. The material presented in the paper
could be useful to both students of physics and physics graduates.

1. Introduction

As is known, physical quantities may have dimensions or are dimensionless. If the quantity
has a dimension, then its numeric value will depend on the choice of system of measuring
units4, and if it is dimensionless, it will not5. The dimension of the physical quantity indicates
its physical nature, because regardless of whether we express the measured distance in feet or
metres, it is a measurement of length. The symbols that are commonly used to designate the
dimensions of basic physical quantities such as length, mass and time are L, M and T.6 Base
physical quantities by mutual multiplication and division give new, derived physical quantities

4 For example, the time interval between two successive sunrises can be expressed as 1 day, as 24 h, as 1440 min or
86 400 s. We see that the numeric value changes depending on the unit of time, although it is always one and the
same interval of time.
5 Height of Mount Everest (h = 8.848 km) and the radius of the Earth (R = 6370 km) are obviously dimensional
quantities, but their ratio, h/R = 0.0014, is dimensionless, and therefore, independent of the unit system.
6 The dimension of volume of electric current is denoted by I, and the dimension of absolute temperature by �.
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with corresponding dimensions. Thus the ratio of the travelled distance and the time interval
gives a new physical quantity (speed), whose dimension is L/T.

Physical law and formula, by which it is expressed, must not depend on the unit system.
It is quite natural because the laws of nature establish a link between the quantities, while
the unit system in which they are expressed is a matter of people’s agreement. Like any
agreement, this one is also subject to changes, so before today’s approved, and more or
less generally accepted International System of Units (SI), we had different measuring unit
systems throughout history. A very important, though seemingly trivial, conclusion follows
that both sides of any equation between physical quantities must have the same dimensions.
The procedure of analysing dimensions of physical quantities, starting from the equality of
left- and right-side dimensions of the equation which connects them, is called dimensional
analysis [1, 2].

After some time, it turned out that dimensional analysis is also a method for reducing the
complex dependence of the physical quantity to its simplest (most economical) form which is
subsequently theoretically or experimentally analysed [3]. Areas in which it is successfully
applied are difficult to enumerate. Some of them are astrophysics, electrodynamics,
aerodynamics, design and construction of ships, mass and heat transfer, mechanics of elastic
and plastic structures, simulation of nuclear reactors, biology and economy [4–6]. Dimensional
analysis is particularly useful in studying the new phenomena for which the appropriate
equations and boundary conditions are not yet fully known.

The contents of the paper may be used at different levels of complexity. The two explicit
examples presented in section 2 can be useful to students, in the analysis of movement of the
body through a fluid and the propagation of waves on water, for better understanding of the
essence of the terms which describe these processes. The Buckingham theorem, presented
in section 3, indicates the tremendous importance of dimensional analysis for understanding
the nature of physical quantities and their mutual relations shown by physical laws. This and
the next two sections are a bit more mathematically demanding and thus accessible to senior
students and graduate students of physics. Sections 4 and 5 describe the application of the
Buckingham theorem to examples discussed in section 2.

2. Intuitive approach to dimensional analysis

When we want to show the dimension of a physical quantity we use square brackets [ ]. If we
are interested in the dimensions of speed u, we will write [u] = L/T. Dimension of area S is
[S] = L2, of volume V is [V] = L3, and acceleration a is [a] = L/T 2. As we will see later, when
applying dimensional analysis, in principle, two problems may occur. The first concerns the
choice of the physical quantities on which the observed quantity depends. Another problem
is the existence of a group of quantities whose algebraic combinations form dimensionless
factors when expressing the required relations. Let us look at how it works in the cases of two
important examples: the resistance of the medium to the movement of the object through it
and propagation of waves on water.

2.1. An object moving through the fluid

Let us try, using dimensional analysis, to determine the resistive force which occurs when
an object moves through a medium. As already mentioned, it is necessary to determine the
quantities on which this force may depend. Our experience says that the resistive force of the
medium increases with increasing velocity u. In addition, objects with larger cross-section
endure greater resistance than those with smaller cross-section. For this reason, the equation
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Figure 1. The resistance force of a medium that flows around different shaped objects of equal
characteristic dimensions.

(This figure is in colour only in the electronic version)

of force certainly must include velocity u and cross-sectional area of the object S. Finally, the
size of the resistance depends on the characteristics of the medium itself. Here is the first
problem: which characteristic of the medium do we choose? It seems natural that we should
choose the density of fluid ρ, because the denser it is, the more it influences the movement of
the object. According to all aforesaid, we will assume the resistance force of the medium in
the form of

Fρ = C

2
uαSβργ (1)

(multiplier 1/2 may be included in C, but was separated for historical reasons). As force
has dimensions of mass multiplied by acceleration, i.e. [F] = LT −2M , from the condition of
equality of dimensions on the left- and right-hand side of equation (1), we obtain

LT −2M = (LT −1)α(L2)β(ML−3)γ = Lα+2β−3γ T −αMγ .

Then follows

L : 1 = α + 2β − 3γ,

T : −2 = −α,

M : 1 = γ.

Their solution is α = 2, β = 1 and γ = 1, so the formula we looked for is

Fρ = CS
ρu2

2
. (2)

The value of the coefficient C is determined experimentally. It is shown that it depends on the
shape of the object (figure 1), i.e. on the way the fluid will flow around it. So for an object in
the shape of a disc, the coefficient C is between 1.1 and 1.2, while for the shape of a ball it is
between 0.4 and 2, and for an object in the shape of a drop it is C ≈ 0.04, or about ten times
less than for the ball and about 30 times less than for the disc of the same radius [7, 8].

The formula of the resistive force (2) was obtained under the assumption that the dominant
feature of the medium, providing resistance to the object movement through it, is density. But
what if, instead of density, the viscosity is taken as a characteristic of the medium, in other
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words, the coefficient of viscosity η as the characteristic quantity, the dimension of which is
[η] = ML−1T−1? In this case, we will assume that the formula of force is as follows:

Fη = BuαSβηδ, (3)

where B is a constant that, as well as constant C, depends on the shape of the object. Dimensions
of equation (3) are

LT −2M = (LT −1)α(L2)β(ML−1T −1)δ = Lα+2β−δT −α−δMδ.

From the corresponding system of equations α = 1, β = 1/2 and δ = 1 are obtained, so the
requested formula is

Fη = Bηu
√

S. (4)

Size
√

S is proportional to the characteristic object size L so the above formula takes the form
of Stokes’ law7:

Fη = BηuL. (5)

As we can see, formulae (2) and (5) are quite different: in one of them the dependence of
force on the speed is square and in the second it is linear. Which one is correct? To answer
this question we would have to, in some way, decide which of the medium characteristics
(density or viscosity) dominates in the problem we are solving. It can be concluded that if the
dominant feature of the medium is density, formula (2), which represents the resistance force
arising from differences in pressure on the front and backside of the object, is true. When
the resistance force is the result of friction, i.e. viscosity, formula (5) is valid. The ratio of
these two forces, Fρ and Fη,

Fρ

Fη

= C

2B

ρu2S

ηuL
, (6)

taking S ∝ L2, can be written as
Fρ

Fη

∝ ρuL

η
. (7)

The dimensionless ratio we obtained is called the Reynolds number

Re = ρuL

η
, (8)

and plays a great role in hydro- and aero-dynamics. The books in the field of fluid dynamics
usually state that for the case of Re < 1, the resistance of the medium caused by the difference
in pressures on the front and backside of the object can be ignored, and the resistive force is
equal to the force of viscous friction. Conversely, when the values of the Reynolds number
are high, we should consider the force caused by pressure differences and ignore the force of
friction. The question is whether it is possible to unify the dependence of resistance force on
density and viscosity. This would mean that we should seek the force in the form of

Fρ,η = A

2
uαSβργ ηδ (9)

(A is a constant). According to dimensional analysis of the left- and right-hand side, we get
LT −2M = (LT −1)α(L2)β(L−3M)γ (ML−1T −1)δ = Lα+2β−3γ−δT −α−δMγ +δ, and therefore
formulae

L : 1 = α + 2β − 3γ − δ,

T : −2 = −α − δ,

M : 1 = γ + δ.

7 As is known, if the object is in the shape of a ball with the radius r, then
√

S ∝ r and B
√

S = 6πr .
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First, it is observed that the number of equations is now smaller than the number of unknowns
(three equations and four parameters), which means that one of the unknowns must remain
undetermined. If the parameters α, γ and β are expressed through δ (γ = 1−δ, α = 2−δ,
β = 1−δ/2), the formula for the resistive force can be written as

Fρ,η = A

2
u2−δS1− δ

2 ρ1−δηδ = A
ρSu2

2

(√
Suρ

η

)−δ

. (10)

The fact that δ is arbitrary power means that the factor in parentheses from the previous formula
has no dimensions and can be included in the dimensionless factor which, in that case, is not
constant but becomes a function of the above-mentioned dimensionless parameter. Note that
this dimensionless ratio is exactly the Reynolds number, so the resistive force formula can be
written as

Fρ,η = A(Re)S
ρu2

2
, (11)

where the function A (Re) is called the coefficient of resistance. The Reynolds number,
therefore, plays an important role in determining the character of the resistive force. The exact
dependence of the coefficient of resistance on the Reynolds number cannot be determined in
this way, but by using different theoretical approaches or by experiment.

2.2. Wave propagation on water

Another interesting example of dimensional analysis application is determining the formula
for the speed of surface waves on water. Our first obvious experiences and notions concerning
the waves come exactly from this type of wave. They occur if, under the influence of an
external action, the free surface of liquid is disturbed from its equilibrium position. The
restoring forces that appear during this are gravitational force and force of surface tension.
Waves caused in such a way represent a complex movement that is influenced not only by
gravity and surface tension, but also by viscosity, depth of liquid, etc. Rough division of waves
on water according to the dominant effect of the restoring force, if we neglect waves whose
wavelength is significantly greater than the depth of water, could be reduced to

• gravitational waves in which the influence of surface tension can be neglected in
comparison to the influence of the gravitational field strength and whose wavelength
is relatively large, but small compared to the depth of water8;

• capillary waves where the gravitational influence is negligible compared to the influence
of surface tension and whose wavelength is relatively small, and small compared to the
depth of water9.

Consider, for example, propagation of gravity waves in the ocean. It is reasonable to
assume that the speed of propagation of such a wave ug depends on the wavelength λ, the
gravitational field strength g and density of water ρ, so the form is

ug = Dραλβgδ (12)

(D is a constant). From the condition of equality of dimensions on the left- and right-hand
side of the equation, we get

LT −1 = (ML−3)α(L)β(LT −2)δ = L−3α+β+δT −2δMα.

8 In these waves λ is larger than 20 cm. The tsunami is an example of a wave whose wavelength often exceeds
100 km so they can reach speeds of 600–800 km h−1. They can carry great energy and can cross large distances.
9 In these waves λ is smaller than 2 mm. They do not cross great distances and have relatively little energy.
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Here it follows that α = 0, β = δ = 1/2, so the velocity of gravitational waves is

ug = D
√

λg. (13)

Note that in relation (12) there is a possibility that the speed of waves also depends on the
density of liquid, but it does not occur in the final formula10 (α = 0), but there is only
dependence on the strength of the gravitational field and the wavelength. The correct formula
for the speed of gravitational waves [9] is

ug = 1√
2π

√
λg. (14)

If surface tension is taken as a dominant restoring force, the waves are capillary and
their speed uc will depend on the density ρ, wavelength λ and the coefficient of surface
tension σ 11, and will form

uc = Eραλβσ δ (15)

(E is a constant). From the condition of dimension equality of the left- and right-hand side of
the equation, we get

LT −1 = (ML−3)α(L)β(MT −2)δ = L−3α+βT −2δMα+δ.

Simultaneous solution of the corresponding system of equations gives α = β = −1/2,
δ = 1/2, and the speed of capillary waves is presented by the relation

uc = E

√
σ

λρ
. (16)

Therefore, the speed of capillary waves is inversely proportional to their wavelength, and with
increasing wavelength, the speed of these waves, unlike gravitational, decreases. The exact
formula for the speed of capillary waves is [9]

uc =
√

2π

√
σ

λρ
. (17)

Formulae (13) and (16) for the speed of waves on water are quite different. One can question
again the choice of criteria for the application of one or other equation. To answer this
question we would have to decide which restoring force (gravitational or surface tension
force) dominates in the current problem we are solving. The problem comes down to the
introduction of specific criteria for assessing the size of the wavelength. To this end, we will
find the ratio between speed uc and ug:

uc

ug

=
E

√
σ
λρ

D
√

λg
∝

√
σ

λ2gρ
. (18)

The dimensionless ratio obtained is associated with the so-called Bond number,

Bo = λ2gρ

σ
, (19)

which in fluid mechanics gives the relationship of gravity and surface tension forces. At large
values of the Bond number, we can neglect the effect of surface tension, while the small value
of this number signals its dominant influence. On the other hand, mid-values of the Bond
number signal the non-trivial relation between these two influences. Let us try now, as in the

10 Since density depends on mass and volume, and that the gravitational field of the same force acts on all objects,
regardless of their masses, this result is logical.
11 Since the coefficient of surface tension is equal to the work per area unit, its dimensions are [σ ] = MT −2.
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previous example, to merge the dependence of the wave propagation speed on surface tension
and strength of the gravitational field. This would mean that the speed should be sought in the
form

ug,c = Fλαρβgγ σ δ (20)

(F is a constant). Analysis of the left- and right-hand side dimensions gives

LT −1 = Lα(ML−3)β(LT −2)γ (MT −2)δ = Lα−3β+γ T −2γ−2δMβ+δ

where the following equations can be derived:

L : 1 = α + 3β + γ,

T : −1 = −2γ − 2δ,

M : 0 = β + δ.

The number of equations is again smaller than the number of unknowns, which means that
one of the unknowns must remain undetermined. If the parameters α, β and γ are expressed
through δ we get α = 1/2−2δ, β = −δ and γ = 1/2−δ. The formula for the speed of wave
propagation can be written as

ug,c = F
√

λg

(
σ

λ2gρ

)δ

. (21)

As δ is an arbitrary power, the factor in parentheses from the previous formula is dimensionless,
and it can be included in the dimensionless constant, and all that, in fact, into an arbitrary
function of this parameter. As this dimensionless ratio is associated with the Bond number,
the formula for the speed of waves can be written as

ug,c = F(Bo)
√

λg. (22)

Complex theoretical analysis shows that the speed of waves on the water is represented by the
general formula [9]

u =
√(

gλ

2π
+

2πσ

ρλ

)
tanh

2πh

λ
,

where h marks the depth of water. This formula, starting with the fulfilled requirement
that λ ≈ h(tan(2πh/λ) ≈ 1), includes the two cases discussed. Based on the observed
examples, we can note that dimensional analysis of formulae that define dependences of
physical quantities relevant for the given process leads to interesting conclusions, but also
opens up some new problems. Therefore, we will deal with dimensional analysis in general
and apply the results obtained to the two observed examples.

3. Dimensional analysis and Buckingham theorem

The physical law that describes a phenomenon in general can be written in the form of

q0 = f (q1, q2, . . . , qn), (23)

where q0 is a physical quantity whose value is determined by mutually independent12 physical
quantities q1, q2, . . . , qn.13 The analytical function that describes the dependence of these

12 As we will see, it is convenient to distinguish physically and dimensionally independent physical quantities. In this
case, it is independent physical quantities that can be dimensionally dependent (meaning that the dimensions of some
of them can be expressed through dimensions of others in this group).
13 These physical quantities are actually the data we get in the corresponding experiment.
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quantities is marked with f . Set q1, q2, . . . , qn is complete if it contains all quantities which
affect q0 and independent if any member of the set does not affect the value of other members14.
When it comes to the form of the functional dependence (23) that connects the dependent and
independent physical quantities, one should note that it must be dimensionally homogeneous
[10, 11]. This means that when the basic unit system changes, q0 and f change by the same
factor. This natural requirement is reduced to the following series of restrictions that must
apply to the physical law (23):

• both sides of the equation must have the same dimensions;
• if a sum of quantities appears in f , all the terms in the sum must have the same dimensions;
• all arguments of any exponential, logarithmic, trigonometric, or other special functions

that appear in f must be dimensionless15.

An important consequence of dimensional homogeneity is the already highlighted fact
that the form of physical laws is independent of the choice of the system of base units (and
its size). When the system of base units is selected, it is necessary to express the dimensions
of variables q0 and q1, q2, . . . , qn within it. If we only deal with mechanical processes, as we
have seen, the dimensions of each variable can be written in the form

[qi] = Lli Mmi T τi , i = 0, 1, . . . , n, (24)

where the exponents li, mi and τ i are numbers without dimensions. In general, the number of
basic physical quantities in the selected system will be denoted by r (in the case of mechanics
r = 3). From the complete set of physically independent quantities q1, q2, . . . , qn, it is
now convenient to choose a complete, dimensionally independent subset of k quantities q1,
q2, . . . , qk (k � n). It is now possible to express each of the remaining n–k physically
independent quantities qk+1, . . . , qn, and the quantity q0 too, through the dimensions of q1,
q2, . . . ,qk (which form this dimensionally independent subset) as

[qj ] = [
q

Nj1

1 q
Nj2

2 · · · qNjk

k

]
, (25)

where j = 0 and j = k +1, . . . , n. (Subset q1, q2, . . . , qk is complete if the dimensions of the
remaining quantities qk+1, . . . , qn can be expressed through the dimensions of the quantities q1,
q2, . . . , qk and it is dimensionally independent if the dimensions of any of its members cannot
be expressed through dimensions of other quantities from that subset.) Selecting a subset with
these properties is not unique, but the number of dimensionally independent quantities that
make it cannot be greater than the number of basic dimensions that appear in the dimensions
of the initial set of quantities, i.e. k � r must be true. In accordance with such grouping of
quantities, relation (23) becomes

q0 = f (q1, . . . , qk, qk+1, . . . , qn, ). (26)

The exponents Nji (i = 1, . . . , k) in formula (25) are rational numbers without dimensions
that are determined by algebraic methods. The formal procedure will be illustrated with the
example of mechanics where the dimensions of all quantities can be shown in formula (24).
Let q1, q2 and q3 make a complete dimensionally independent subset. Substituting formula
(24) into relation (25), as a result of the request for its dimensional homogeneity, we obtain
the following system of algebraic equations:

lj = Nj1l1 + Nj2l2 + Nj3l3

mj = Nj1m1 + Nj2m2 + Nj3m3 (27)

τj = Nj1τ1 + Nj2τ2 + Nj3τ3,

14 So for example, the value of velocity of the object that moves through the fluid will not affect the other relevant
quantities: surface of the object, density of the environment and its viscosity.
15 For example, in the formula A = Be−C–(D1+D2)/E+F, C must be dimensionless, D1 and D2 must have the same
dimensions as well as A, B, D/E and F.
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where, as already emphasized, j = 0 and j = k +1, . . . , n. For each value of the index j

or in other words, for each of dimensionally dependent physical quantities q0, qk+1, . . . , qn,
we get a system of three algebraic equations with three unknowns (Nj1, Nj2, Nj3) that can
be easily solved. As both sides of equation (25), for each value of the index j , have the
same dimensions, dividing the left-hand side by the right, we get a series of dimensionless
monomial:

0 = q0

qN01
1

qN02
2

. . . qNok

k

, (28)

1 = qk+1

q
N(k+1)1
1 q

N(k+1)2
2 . . . q

N(k+1)k

k

, (29)

n−k = qn

qNn1
1

qNn2
2

. . . qNnk

k

. (30)

If we still use equation (26), the first of these formulae becomes

0 = f (q1, . . . , qk, qk+1, . . . , qn)

qN01
1

qN02
2

. . . qN0k
k

. (31)

It contains dimensionally dependent quantities (qk+1 to qn) which we can express through the
monomials defined by relations (29) and (30) so we get

0 = f
(
q1, . . . , qk,1q

N(k+1)1
1

· · · qN(k+1)k

k , . . . , n−kq
Nn1
1

· · · qNnk

k

)
qN01

1
qN02

2
. . . qN0k

k

, (32)

or

0 = φ(q1, . . . , qk,1, . . . , n−k), (33)

where φ denotes the new functional dependence within the set of dimensionally independent
quantities k (q1, q2, . . . ,qk) which also includes all dimensionless combinations of remaining
n–k+1 values (q0, qk+1, . . . , qn). Since all quantities that appear in the final equation are
dimensionless except q1, . . . , qk, their values do not depend on the choice of the basic unit
system16. This means that while changing the unit system, the quantity 0 does not change,
meaning that

∂0

∂q1
= 0,

∂0

∂q2
= 0, . . . ,

∂0

∂qk

= 0, (34)

whence we conclude that quantity 0 in fact does not depend on any of the q1, . . . , qk so
relation (33) takes the final form

0 = �(1, . . . ,n−k). (35)

Since expression (35), within dimensionless monomials 0 to n−k, contains all the relevant
physical quantities (q1, q2, . . . , qn) that describe the observed process, it is actually just a
second, more suitable, starting form of equation (23). The formula obtained is the final result
of dimensional analysis and represents the so-called Buckingham π theorem17, which can be
formulated like this: let us take q0 to be a physical quantity the value of which is determined
by n independent physical quantities q1, q2, . . . , qn, of which k are mutually dimensionally
independent. The remaining n–k quantities can be expressed as dimensionless and independent

16 Let us recall that these quantities which remained in expression (33) cannot form dimensionless combinations
because it was the main criteria for choosing them, i.e. they were chosen to be dimensionally independent.
17 The theorem was named after the fact that Buckingham has marked dimensionless combinations by symbol , in
his original paper from 1914.
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quantities within relation (35). The number of independent quantities that describe the given
physical problem in this case decreases from n to n–k [3, 11]. Dimensionless relations 0

to n–k are often called  groups. We note that the  group denotes grouping of quantities
rather than the group in mathematical sense. The main advantage of dimensional analysis
is exactly in that. Although while using it, we cannot determine the functional dependence
(35), it allows us, by using a relatively simple procedure, to reduce the number of arguments
of the starting functional dependence, and thus reduce the problem to further experimental or
theoretical investigation of a small number of physically independent dimensionless quantities
whose values determine the observed q0 quantity.

4. The applications of the Buckingham theorem

As we have seen, we get dimensionless relations of physically independent quantities that
determine the observed quantity q0, by applying the principle of homogeneity, which states,
in short, that both sides of the equation that describes a physical phenomenon must have the
same dimensions, and by applying the analytical principles, according to which every physical
phenomenon is described by an analytical function (23). The procedure of application of the
Buckingham theorem can be implemented through the following steps:

(1) identifying a complete set of physically independent quantities,
(2) forming of a subset of dimensionally independent quantities,
(3) constructing the dimensionless-monomial relations (28)–(30),
(4) representing their final dependence in the form of (35).

4.1. Application of the Buckingham theorem to the analysis of an object’s motion
through a fluid

The first step stipulated by the application procedure of the Buckingham theorem consists in
determining the complete set of physically independent quantities, i.e. in taking into account
all quantities which determine the value of the resistance force (q0 = F) with object movement
through the fluid. As we have seen, they are object’s velocity q1 = u, its cross-sectional area
q2 = S, density of the fluid q3 = ρ and its viscosity determined by the corresponding coefficient
q4 = η, so that the required set is (u, S, ρ, η). The number of physically independent quantities
n in this case is 4, and the obtained set is complete and physically independent but not unique.
Another such set could be (u, L, ρ, η), where L is a characteristic dimension of the object. In
the second step we should make the dimensional analysis of a set of physically independent
quantities (u, S, ρ, η) and separate from it the dimensionally independent subset18. As the
dimensions of these quantities are [u] = LT−1, [S] = L2, [ρ] = ML−3, [η] = ML−1T−1, one can
immediately see that they are not dimensionally independent. However, if we form a subset
(u, S, ρ),19 all the quantities will be dimensionally independent inside it. We conclude that,
in this case, k = 3. It means that we will have only one more monomial apart from 0 (since
n–k = 4–3 = 1), which appears on the right-hand side of formula (35). In the third step it is
necessary to determine these monomials. They will be, according to (28) and (29),

0 = F

uN01SN02ρN03
, (36)

18 The problem is mechanical so the basic physical quantities are length, mass and time, which means that r = 3.
19 Note that a subset of dimensionally independent quantities is not unique. In this case it is possible to select three
more subsets: (u, S, η), (S, ρ, η) and (u, ρ, η) but by a direct check we see that it will not affect the final result.
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1 = η

uN41SN42ρN43
, (37)

with coefficients which have to be determined from the condition of dimensional homogeneity.
The appropriate systems of algebraic equations are obtained based on the relations

L0M0T 0 = LMT −2(LT −1)−N01(L2)−N02(L−3M)−N03 ,

L0M0T 0 = L−1MT −1(LT −1)−N41(L2)−N42(L−3M)−N43 ,

by comparing the left- and right-hand side powers. It is easy to see that for the required
coefficients we obtain N01 = 2, N02 = 1, N03 = 1, i.e. N41 = 1, N42 = 1/2, N43 = 1. Based on
that expression (36) and (37) become

0 = F

u2Sρ
, (38)

1 = η

uS1/2ρ
, (39)

where you can see that the monomial 1 equals the inverse value of the Reynolds number (8).
Finally, in the fourth step, on the basis of the theorem, i.e. between the two monomials there
is a functional relationship in the form of (35), i.e.

F

u2Sρ
= �

(
η

u
√

Sρ

)
. (40)

Given the complete arbitrariness of this functional dependence, it can be written in the form
of (11).

4.2. Application of the Buckingham theorem on propagation of waves on water

Let us now apply the Buckingham theorem on propagation of waves on water. The complete set
of physically independent quantities that determine the value of speed of propagation of waves
(q0 = u) are the density of water q1 = ρ, wavelength q2 = λ, the strength of the gravity field
q3 = g and surface tension q4 = σ , which means that the number of physically independent
quantities is again n = 4. Dimensions of the abovementioned, physically independent
quantities are [ρ] = ML−3, [λ] = L, [g] = LT−2 and [σ ] = MT−2. From the set (ρ, λ,
g, σ ), we extract one subset of dimensionally independent quantities. Let this be the subset
(ρ, λ, g). Since k = 3 the number of monomial on the right-hand side of expression (35) is
n–k = 4–3 = 1. This means that it is necessary to form and determine a total of two
dimensionless forms 0 and 1. Forms of these monomials, in accordance with (28) and
(29), will be

0 = u

ρN01λN02gN03
, (41)

1 = σ

ρN41λN42gN43
, (42)

Based on the principle of dimensional homogeneity, we obtain

L0M0T 0 = LT −1(L−3M)−N01(L)−N02(LT −2)−N03 ,

L0M0T 0 = MT −2(L−3M)−N41(L)−N42(LT −2)−N43 .

Solving the corresponding system of equations for the unknown coefficients, we obtain
N01 = 0, N02 = 1/2, N03 = 1/2 and N41 = 1, N42 = 2, N43 = 1 so the final form of
expression (41) and (42) will be
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0 = u√
λg

, (43)

1 = σ

λ2ρg
. (44)

1 monomial is therefore equal to the reciprocal value of the Bond number (19). According
to the Buckingham theorem, the dependence 0 = �(1) now has the final form

u√
λg

= �

(
σ

λ2ρg

)
, (45)

which can be reduced to the form (22) with minimal transformation.

5. Dependence on dimensionless Π monomials

As already noted, the functional dependence in expression (35) is, for a specific case, usually
determined experimentally. Thus, in the case of an object’s motion through the fluid, we
need to, in some way, determine the value of the δ degree in expression (10), i.e. functional
dependence 0 = �(1) presented by the general relation (35) or in this particular case (40).
We can immediately note that for δ = 1, relation (10) gives formula (5) for force, while in
the case when δ = 0, the force has the form of (2). It is actually about the limiting cases,
i.e. the corresponding asymptotic behaviour of the function � in the expression 0 = �(1).
According to [12], if we assume that 1 < 0, then the quantity 0 essentially depends on 1

if this is true

lim
1→0

�(1) =
{

0
∞ . (46)

We note that this assumption will not diminish the generality of the conclusion because the
shape of the function in relation (35) is completely arbitrary, which means, among other things,
that arbitrary algebraic transformations are allowed, including taking the reciprocal value. The
words depends essentially mean that the final form of expression 0 = �(1) a dimensionless
monomial will need to appear in such a way that will affect its ultimate functional dependence.
In this case it is necessary to observe relation (40) which we will write in the form

F = u2Sρ�(Re). (47)

The experiments show that in two borderline cases the function �(Re) has the values [13]

�(Re) ∝
{

1/Re, Re < 10
1, Re > 100

. (48)

The range 10 < Re < 100 is a transition region.
In other words, if the flow is such that the Reynolds number is less than 10, relation (47)

becomes

F ∝ u2Sρ
1

Re
= ηuL. (49)

We obtained this formula as a result of the fact that during such a regime of motion of the
object, we have essential dependence on the shape of monomial which represents the Reynolds
number. In another limiting case, we get the following expression for force:

F ∝ u2Sρ. (50)

Thus, the Reynolds number, during this regime of movement, does not essentially change the
dependence of force from the one we got by dimensional analysis. It is easy to show that the
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situation is very similar to the formulae of the speed of waves on water. Namely, expression
(21) for δ = 1/2 comes down to relation (16), while for δ = 0 it becomes relation (13). If we
look through the Buckingham theorem again, we again deal with the corresponding behaviour
of functional dependence 0 = �(1) in areas where it has either the value of 1/

√
Bo or

value 1.

6. Conclusion

As we have seen, there are two approaches to solving the problem using dimensional analysis,
the first called intuitive and the other based on the Buckingham theorem. The first approach is
usually applied when the number of physical quantities considered is relatively small (3–4),
and if there are more, it is more rational to apply the Buckingham theorem.

Dimensional analysis is a powerful and universal tool to understand the properties of
physical quantities independent of the units used to measure them. Therefore, it is not
surprising that the first ideas about its use can be found in Fourier [4], and that it was applied
in works of Maxwell, Rayleigh, Einstein, Planck, etc. The complete theoretical framework of
dimensional analysis is given by the Buckingham theorem, the help of which the dependence of
the observed physical quantity q0 on the often large number of other quantities (q1, q2, . . . , qn)
can be reduced to the minimal, or invariant, dependence between the so-called  groups.
These groups are dimensionless numbers which are often called similarity numbers or scaling
invariants of the given physical problem (Reynolds, Bond, Mach, and other numbers). This
is easily understood in the case of the Reynolds number, which is very commonly found
as an example of the  group. Suppose we want to determine how a type of aircraft will
behave when it moves through air flowing around it in a certain way. For practical reasons
it is better to perform the corresponding experiments on reduced models of the aircraft for
which the Rayleigh number will have the same value as in the case of movement of the
real aircraft. Only in this case will the conclusions that follow from the experiment with
the model aircraft be valid for the original system also, as both are described by the same
dimensionless model. In other words it means that we can be sure that the effects that occur
will be equal to those that will occur during the actual aircraft flight. Let us point out a few
more important facts which we encounter in dimensional analysis. The most important thing is
proper selection of the complete set of physically independent quantities. Their choice is not
trivial and it must be guided by certain principles. Among them the so-called principle
of continuity is important, which actually represents a fact that small quantities usually
have little impact on the monitored system. Although we know that in complex systems there
are deviations from this rule (the butterfly effect of chaos theory), it is still a rule that applies
in most cases. If it were not so, it would be impossible to predict the results of experiments
because they would be affected by a large number of factors (physical quantities) present in
nature, whose values we could not determine in any way. Common idealizations we commonly
use in physics, such as object movement without friction, inextensible string, material points
ideal resistors and capacitors, precisely find the justification in the principle of continuity. In an
attempt to construct an idealized physical model of the real physical situation, we are always
forced to make certain approximations. Good knowledge of physical processes in a given
system gives us the right not to take into consideration some of the quantities, considering
that under given conditions they have negligible effects in the formation of a complete set of
physically independent quantities. Finally, let us note that within this approach, we cannot
obtain the values of dimensionless constants of proportionality that appear in formulae. As
a rule, however, these constants have values 1/2,

√
2π, 1/

√
2π . . . , meaning that they are

neither too big nor too small, so that dimensional analysis can also serve to estimate the order
of magnitude of physical quantities.
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